GGOS: Depending on Science and a Service for Science

Richard S. Gross

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109–8099, USA

Global Geodetic Observing System Retreat 2008

> March 25–28, 2008 Bertinoro, Italy

The Three Pillars of Geodesy

The World in Three Dimensions: Shuttle Radar Topography Mission

Shape & Deformation

Rotation

QuickTime • and a YUV420 codec decompressor are needed to see this picture.

The Three Pillars of Geodesy

Shape & Deformation

Rotation

Gravity & Geoid

QuickTime • and a YUV420 codec decompressor are needed to see this picture.

Geodetic Observing Systems

Rummel et al. (2005)

Beckley et al. (2007)

Causes of Observed Variations

 \rightarrow

Mass Load Measurements & Models

(95% significance level of correlation = 0.51)

	(2,0) cosine					
	Models	RL01	RL04	SLR	GPS	EOP
Models	1.0	0.62	0.70	0.94	0.88	0.57
RL01	(37.9)	1.0	0.83	0.65	0.61	0.47
RL04	(48.5)		1.0	0.73	0.71	0.53
SLR	(88.3)			1.0	0.87	0.68
GPS	(6.1)				1.0	0.60
EOP	(25.7)					1.0

greatest correlation between independent measurements
greatest correlation with models

(variance of measurement explained by models in percent) (greatest variance explained)

	(2,1) cosine					
	Models	RL01	RL04	SLR	GPS	EOP
Models	1.0	0.70	0.26	0.33	0.65	0.46
RL01	(44.4)	1.0	0.40	0.52	0.49	0.37
RL04	(-14.4)		1.0	0.03	0.19	0.59
SLR	(–5.9)			1.0	-0.03	0.07
GPS	(38.1)				1.0	0.40
EOP	(-14.9)					1.0

	(2,2) cosine					
	Models	RL01	RL04	SLR	GPS	
Models	1.0	0.40	0.74	0.26	0.59	
RL01	(16.2)	1.0	0.55	0.34	0.18	
RL04	(51.4)		1.0	0.45	0.43	
SLR	(5.0)			1.0	-0.09	
GPS	(15.2)				1.0	

		(4	<u>, i) Sin</u>	e		
	Models	RL01	RL04	SLR	GPS	EOP
Models	1.0	0.76	0.78	0.67	0.56	0.78
RL01	(55.9)	1.0	0.81	0.56	0.71	0.83
RL04	(58.9)		1.0	0.53	0.61	0.81
SLR	(42.4)			1.0	0.53	0.60
GPS	(30.2)				1.0	0.56
EOP	(61.0)					1.0

(2.1) aina

(2,2) sine							
	Models	RL01	RL04	SLR	GPS		
Models	1.0	0.93	0.92	0.82	0.60		
RL01	(69.2)	1.0	0.95	0.83	0.61		
RL04	(75.9)		1.0	0.85	0.64		
SLR	(61.9)			1.0	0.63		
GPS	(29.1)				1.0		
Gross <i>et al.</i> (2008)							

GGOS Contributions

- Terrestrial and celestial reference frames
 - Earth orientation parameters
- Precise positioning
 - Monuments on ground
 - Tide gauges
 - Satellites in space
 - Radar and laser altimeters
- Gravity measurements
 - Time variable
 - Ocean-bottom pressure
 - Static
 - Mean ocean circulation
- GNSS reflections

Unified Observations

- Eliminates inconsistencies
 - Between observations taken by different techniques
 - VLBI, SLR, GPS, DORIS
 - Between EOPs and reference frames
 - IERS Combination Pilot Project
 - Gravity (?)
 - Between measurements taken in different reference frames
 - Example: satellite altimetric measurements of sea surface height
- Strengthens solution
 - Better global distribution of stations
 - VLBI + SLR + GPS + DORIS
 - More measurements
- Requires common standards

Unified Models

- Changes in observed shape, rotation, and gravity
 - Often have a common cause
 - Examples: atmosphere, oceans, hydrology, earthquakes, GIA
 - But are often modeled separately
 - Example: flat Earth models for earthquake displacements; spherical for rotation
- Develop common models
 - From common shape, rotation, and gravity observations
 - Surface change
 - Mass transport and exchange
 - Angular momentum exchange
- Dynamic Earth theme

Foundation for a Scientific Vision

- Unify observations
 - Example: IERS Combination Pilot Project
- Unify models
 - Same model used to predict all geodetic observations
- Unify observations with models
 - Assimilate geodetic observations into models
- Dynamic Earth
 - Surface change (natural hazards)
 - Shape and deformation
 - Mass transport and exchange (climate change)
 - Gravity and geoid
 - Angular momentum exchange
 - Earth rotation

Toward Real-Time GPS for Tsunami Warning Systems and Post-Earthquake Damage Assessment and Emergency Response

Geoff Blewitt, Corné Kreemer, Bill Hammond, Hans-Peter Plag, Seth Stein, Emile Okal, Yoaz Bar-Sever, Richard Gross, Vindell Hsu, Kenneth Hudnut, Mark Simons, Tony Song, and Frank Webb

> University of Nevada Reno Northwestern University Jet Propulsion Laboratory NOAA/NWS, USGS, and Caltech

GREAT Alert System: Enhance Tsunami Warning System

GREAT Alert System: Enhance Earthquake Damage Assessment

