Geodetic contributions to studies of the physics of earthquakes

Kosuke Heki

Dept. Natural History Sci., Hokkaido Univ., Sapporo, Japan

GGOS workshop 2007@Frascati 6 Nov. 2007

Topic #1. Positioning : recurrence Topic #2. Gravimetry : co-/postseismic changes Topic #3. Propagation media : coupling with atmosphere

Topic #1. Biannual slow slip events in SW Japan

Slow lear the goodke

Fast (Fegutar) eachthquake

Episodic Tremor and Slip (ETS) Slow Slip Event (SSE) Silent Eq., Afterslip Very Low Frequency Eq. (VLF) Low Frequency Eq. (LFE) A family

Scaling law: The longer it takes, the larger is the earthquake

Fastest plate motion ? (UNAVCO webpage)

Velocity relative to the Amurian Plate

125 mm/yr (!) N46W

Hateruma N20W

Time constants τ 0.10-0.15 year

SSE Displacement = $A \left[1 - \exp(-t/\tau)\right]$

Comparing the three islands

SSE in Up component

No interplate earthquakes at the Ryukyu Trench

Slow slip events repeating biannually there (too fast to be recognized in secular velocity fields)

Horizontal movements by SSE

Estimating fault parameters for the 17th SSE

Slip ~ 5-6 cm consistent with convergence rate
 ~ SE-ward close to the convergence direction
 Depth ~ 20-40 km "transient" depth
 Average seismic moment 1.26 x 10¹⁹ Nm (Mw ~6.7)

Stick-slip and Earthquake Recurrence

SSE in Guerrero, Mexico (Lowry, 2006) 7 events annually repeating in winter

Other "periodic" SSEs

Alaska ~ 1 yr interval /winter (??) [Ohta et al., 2007]

Shikoku ~ 0.5 yr interval [Hirose & Obara, 2005]

Central Japan ~ 0.5 yr interval [Fukuda & Sagiya, 2007]

"Commensurability" with a year Stress perturbation by climatic load?

Stick-slip and Earthquake Recurrence

External perturbation governs the rhythm?

Controlled by external seasonal rhythm?

Let us compare 2 histograms.

Periodicityo internadiofoexingnal rhythm?

Recurrence of interplate thrust events in the Nankai Trough

Stick-slip and Earthquake Recurrence

Nankaido Eqs. looks time predictable

Cumulative slip and plate convergence

Topic #1 summary: TIME

Recurrence of this series is time-predictable
 not seasonal
 General feature?

Topic #2. Co- & Postseismic gravity changes from GRACE (Ogawa, R. & K. Heki, GRL, 2007 March)

Improvements:
1. GRACE data from Release 01 to 04 (UT/CSR)
2. Fault model from Banerjee et al. (2005) to Banerjee et al. (2007)

Gravity/Geoid Measurements with GRACE Monthly data sets since 2002

Seasonal gravity changes due to land hydrology
 Trend in gravity due to global warming
 Sudden gravity changes due to earthquake

<u>Coseismic</u> gravity change of the 2004 Sumatra Eq. (Han et al., Science, 2006)

How does an earthquake change the gravity?

Coseismic Mass Perturbation

Geoid height changes $\Delta U = \sum_{i} G \Delta m_i / r_i$ $\Delta h = \Delta U / g$

Geoid height change by uplift/subsidence

Positive in total and short in wavelength
Geoid height change by dilatation

Negative in total and long in wavelength

Subducting (downward) movement of substance makes a dent in Geoid (decrease of gravity).

GRACE is shortsighted

On/Off of the 350 km Gaussian filter:

Time series of Geoid height (RLO4) (N7.0, E96.5)

Postseismic changes?

Time series of Geoid height (RLO4) (N10.0, E92.0)

Time constant ~ 0.6 year

First detection of postseismic gravity/geoid changes in the world

Key features

Opposite to coseismic
Rapid (τ~0.6yr)

Which of the following? 1. Afterslip 2. Viscoelasticity 3. Pore fluid diffusion

In afterslips, post- and coseismic directions are same

Heki et al. (1997)

Which of the following?

- 1. Afterslip
- 2. Viscoelasticity
- 3. Pore fluid diffusion

Burgers Viscoelasticity Viscous relaxation of mantle (Pollitz et al., 2006)

Observed time constant is too short Predicted Andaman subsidence is inconstant with GPS observations

Which of the following?

2. Viscoelasticity
 3. Pore fluid diffusion

Pore fluid diffusion

Water diffusion /pore pressure change : opposite sense, short-term

Water in wedge mantle

Diffusion of H₂O at the Fault's End (Nur & Booker, 1972)

K: permeabiliy β: bulk compressibility (40 GPa) Water volume fraction : 1 % η : viscosity of supercritical water (10⁻⁵ Pa s)

Self-healing of Geoid may also suppress earthquake-induced polar motions

NewScientist.com | Space | Technology | Jobs | Subscribe NewScientist Environment SEARCH Water helps earthquake-ravaged Earth to heal 17:53 10 April 2007 From New Scientist Print Edition. Subscribe and get 4 free issues) Search Tips Go Michael Reilly The geological scar left by the devastating earthquake off the coast Tools of Sumatra in December 2004 has healed more quickly than HOME expected. diag STORIES Satellite measurements of Earth's gravitational field taken just after BLOG the quake show it left a depression 8 millimetres deep in the crust and shallow mantie. While this does not seem like much, SPECIAL REPORTS Advertisement the shifting mass jolted Earth's axis of rotation enough to SUBSCRIBE move the poles by 10 centimetres. SEARCH In under a year, however, the depression had nearly vanished - something that surprises geologists, because EEDS according to models of how rocks in the mantle move it should have taken 20 years. "It's almost impossible for rocks to move, that quickly," says Kosuke Heki of Hokkaido University in Sapporo, Japan. So Heki's team developed a new model to show how Earth could have healed itself in as little as seven months. The **Print Edition** key, he says, is that the mantle beneath the 1200-kilometre fault has more water than usual - about 1% of the rock by NewScientist weight. As the water is under intense heat and pressure, it behaves like a gas and can move through kilometres of solid rock in a short time. THERE IS A WORLD In his model, water flows from rocks compressed by the MORE FUNDAMENTAL quake into those that expanded as it released their stresses. The influx causes the de-stressed rocks to return THAN LOGIC & MATHS to their original state faster. The model also suggests that the extent of permanent shifts in Earth's rotational axis due A. TRUE

Journal reference: Geophysical Research Letters (vol 34, p L06313)

to strong guakes would be less than expected.

B. FALSE

Topic #2 summary: New sensor

Seismometer
 GPS (positioning)
 GRACE (gravity)

A talk in a similar topic later in this session Diament et al., What does satellite gravity bring to the understanding and monitoring of large earthquakes?

Topic #3. Studying Earthquakes by GPS -TEC

Seismic waves propagating upward

Time-distance diagram of the disturbance

1994 Hokkaido-Toho-Oki Satellite 20

1st and 2nd phases Rayleigh surface wave and acoustic wave

Power spectrum of the 3rd phase

2004 Sumatra-Andaman Earthquake

3.7mHz 4.4mHz

Solid Earth 21 min. 54 min. 44 min. Earth Earth Earth $_{0}S_{0}$ $_{0}S_{2}$ $_{0}T_{2}$

Atmosphere (standing acoustic wave)

Normal Modes of the solid earth and atmosphere

Artru et al. (GJI 2004)

Solid earth - atmospheric resonance in the background free oscillation

Nishida, K. et al., Resonant oscillation between the solid earth and the atmosphere, Science, 287, 2244, 2000.

Phase velocity : ~4 km/sec

2007 Jan. Outer rise earthquake

Topic #3 summary: New seismology

- 1. Crust/Mantle
- 2. Core
- 3. Atmosphere/ionosphere

A talk in a similar topic later in this session

Lognonné et al., Ionospheric seismology : a new perspective in earth observation

Joint work with

Topic #1. GPS : Takeshi Kataoka (MSc student) Topic #2. GRACE : Ryoko Ogawa (PhD student) Topic #3. GPS-TEC : Naoki Kobayashi (Tokyo Inst. Tech.)

Thank you

