Providing a Stable Reference Frame for Observing the Effect of Global Climate Change on Sea Level

Geoff Blewitt University of Nevada, Reno, USA

Zuheir Altamimi IGN, Paris, France

with thanks to co-authors of WCRP workshop "Understanding Sea-Level Rise and Variability" J. Davis, R. Gross, C. Kuo, F. Lemoine, R.Neilan, H.-P. Plag, M. Rothacher, C.K. Shum, M.G. Sideris, T. Schöne, P. Tregoning, and S. Zerbini

Overview

- Relevance of reference frames to sea level change
- Defining a reference system and reference frame
- Geodetic techniques for realizing the International Terrestrial Reference Frame (ITRF)
- Errors related to reference systems and their effects
- Challenges and future requirements
- Recommendations

Relevance of Reference Frames to Sea Level Change

Relevance of Reference Frames to Sea Level Change

Terrestrial Reference Frames

- One of the biggest sources of error in quantifying long-term variation in sea level
- o 2 mm/yr origin error (Earth center of mass)
 - ⇒ 0.4 mm/yr in global sea level from satellite altimetry
- 0.1 ppb/yr (10⁻¹⁰/yr) scale error
 - ⇒ 0.6 mm/yr global sea level rate
- Frame-related errors are <u>comparable</u> in magnitude to individual physical contributions
 - o Glaciers, Greenland, Antarctic, thermal expansion, ...

Relevance of Reference Frames to Sea Level Change

- Need to tie sets of observations in a consistent model
- (1) Sea level from satellite altimetry
 - <u>Sea surface</u> in the frame of the satellite orbits
 - Reference system needed for consistency over decades
 - TRS origin = Earth center of mass ⇒ "Geocentric sea level"
 - not directly related to <u>impacts</u>
 - not directly related to <u>ocean volume</u>

(2) <u>Relative Sea Level = Sea Surface – Ocean Bottom</u>

- o RSL directly relates to coastal impacts and to ocean volume
- RSL can be related to observations that are tied within a TRS

Static sea surface (t)	Earth's gravitational shape (t)
Ocean bottom (t)	Earth's geometrical shape (t)

surface loading theory, sea-level equation, mass conservation

A Geodesist's View of Sea Level

Example: Seasonal Variation in Global Sea Level from Earth's Shape

Defining a Reference System and Reference Frames

Three conceptual levels [Kovalevsky et al., 1989]:

- <u>Ideal Terrestrial Reference System</u> (TRS) is a mathematical, theoretical system
- The <u>Conventional TRS</u> is the sum of all conventions (models, constants,...) that are necessary to realize the TRS
- A <u>Conventional TRF</u>, which uses above to realize the TRS.

In effect:

- The TRS is an ideal, conventional model
- The TRF is a list of station coordinates and velocities based on space geodetic observations
- The "meaning" of coordinates and velocities should only be taken within the context of the conventional TRS

Geodetic Techniques for Realizing ITRF

- <u>Mix of techniques</u> is necessary to realize a frame that is stable in origin, scale, and with sufficient coverage
 - VLBI
 - SLR
 - GNSS (GPS,....)
 - DORIS
- Also important to understand <u>biases</u> and so improve the frame
- Requires <u>links</u> between techniques

Technique Signal Source Obs. Type	VLBI Microwave Quasars Time difference	SLR Optical Satellite Two-way absolute range	GPS Microwave Satellites Range change
Celestial Frame UT1	Yes	No	No
Polar Motion	Yes	Yes	Yes
Scale	Yes	Yes	Yes
Geocenter	No	Yes	Yes
Geographic Density	No	No	Yes
Real-time	Yes	Yes	Yes
Decadal Stability	Yes	Yes	Yes

From Ries et al., 2005, presented at NASA Sea Level Workshop

Errors Related to Reference Frames

Errors Related to Reference Systems and their Effects (1)

Hierarchy of Errors

- <u>Model</u> error in the reference system conventions
 - Station motion model, gravity field, etc.
- External error in alignment of the reference frame
 - Origin, scale and orientation, and their stability in time
- Internal error in coordinates of stations within the frame
 - Stations used for relative positioning of user's station
- All above is in <u>addition</u> to user's <u>observational</u> errors

Errors Related to Reference Systems and their Effects (2)

Errors in TRS conventions map into

- Errors in station positions and satellite orbits
- Errors in sea surface, gravity, Earth surface geometry

Errors in origin and scale map into

• Errors in geocentric sea level

Errors in TRF station coordinates map into

- Errors in motion of tide gauges
- Errors in altimeter bias calibration
- As conventions and frames are updated, so do the <u>entire</u> position time series, hence interpretation
 - Unlike tide gauge data, cannot simply "archive" positions

Example: Effect of Origin Translation

■ (IGS – ITRF2000) origin rate: v = (-1.5, -2.2, -2.1) mm/yr

• Effect on T/P sea level trend = $-0.09389v_x - 0.04847v_y - 0.11536v_z$

• local = 3 mm/yr; global mean = 0.4 mm/yr, T/P mean = 0.5 mm/yr

SLR Origin & Scale Variation (wrt ITRF2000)

Impact of the Z-translation drift between ITRF2005 & ITRF2000: 1.8 mm/yr

- Vertical velocity change by 1.8 sin(φ) mm/yr
 - Zero at the equator and +1.8, -1.8 mm/yr at north and south poles, respectively (PGR/GIA?)
- North velocity change by 1.8 cos(φ) mm/yr
 - 1.8 mm/yr at the equator and zero at north and south poles, respectively

Challenges and Future Requirements

ITRF needs to be made more <u>robust</u> and <u>stable</u>

- Current accuracy: 1–2 mm/yr origin, 0.1 ppb/yr scale
- Target accuracy: 0.1 mm/yr origin, 0.01 ppb/yr scale

Global sea level monitoring <u>critically</u> depends on:

- **GNSS** to locate satellites and Earth's surface (tide gauges)
- <u>SLR</u> to realize the <u>origin</u> as the Earth center of mass
- VLBI and SLR to realize a stable scale
- <u>Control of biases</u> in geodetic systems
- Threats?

Threats: ITRF on "shaky ground": current collocations

- o <u>Ties</u> between SLR-VLBI-GNSS are <u>weakening</u> in time
- Uneven station distribution leads to biases
- No long-term systematic <u>commitment</u> to support ITRF

ILRS Network

Number of stations

Threats: VLBI vs SLR Scale wrt ITRF2005

Post ITRF2005 Analysis Scale Annual Average

Recommendations

- Strengthen ITRF: Make more robust and stable
 - <u>Research</u> to realize 0.1 mm/yr origin and 0.01 ppb/yr stability
 - Strengthen geodetic infrastructure to realize the same
 - Improve <u>network design</u> (distribution and collocation)
 - Support <u>GGOS</u> as the paradigm for geodetic integration
- Continue overlapping altimetric missions indefinitely
 - Monitoring of biases to ensure long-term consistency
- Establish long-term commitment to ITRF
 - Reference frames need international recognition as being fundamental to many aspects of Earth observations, including sea level monitoring