How can combinations help to achieve consistency at the 0.1 ppb level?

- Introduction
- Two types of combinations
- How accurate are our geodetic products?
 - Positioning Performance
 - TRF parameters (Origin & Scale)
 - Earth Orientation Parameters
- What are the Limitation Factors?
- Conclusion

Zuheir Altamimi, David Coulot, IGN, France

Philippe Berio, Pierre Exertier, OCA, France

GGOS Workshop, Munich 8-9 Oct. 2006
Consistency at the 0.1 ppb level
What does it mean? (1/2)

We should consider e.g.:

- The type of product and its application
- The epoch of each measured/estimated quantity/parameter and its time validity
- Long-term stability of some parameters (e.g. TRF datum parameters – scale – origin)
- Quality of the product: Accuracy or Precision?
Consistency at the 0.1 ppb level
What does it mean? (2/2)

Accuracy assessment

- Usually with respect to the "truth"
- What to do in case of one technique?
 - UT1 from VLBI
 - ITRF Origin from SLR
- We need redundancy: different techniques, methods, strategies, models, etc.
 - Consistency between techniques for the same estimated parameters
 - User Requirements?
Two type of combinations

1. Combination of products (TRF, EOPs, etc.)
 - Used by the IERS for its official products (ICRF, EOPs, ITRF)

2. Combination of raw observations
 - Should be regarded as the "ideal" way to go
 - Still under Research & Development
 - Several groups are needed
 - Some groups start to deliver solutions

More details in the Position Paper
Positioning Performance

- Related to station positions
- Assessed per technique/solution
 - Precision - Repeatability - Internal Consistency
- Positioning Accuracy:
 - Consistency btw techniques: possible only in co-location sites
 - Quality of local ties
 - Station/Site dependant (well and less performing instrument/stations)
 - Accuracy wrt ITRF: GPS Precise Point Positioning
Positioning Performance

- Example from the ITRF2005 experience

- Imput data under the form of time series of Station Positions and EOPs
ITRF2005 Derivation

Step 1

VLBI

W1 W2 ... Wn

SLR

Stacking

GPS

DORIS

Local Ties

Combination ITRF2005

TRF (X, V) + EOP (SINEX)

Step 2
Positioning Performance from ITRF2005 Experience

2D-WRMS (mm) VLBI/ IVS session WRMS UP-WRMS (mm)

VLBI

2D-WRMS (mm) ILRS Weekly WRMS UP-WRMS (mm)

SLR

2D-WRMS (mm) DORIS/IGN Weekly WRMS UP-WRMS (mm)

DORIS

2D-WRMS (mm) IGS Weekly WRMS UP-WRMS (mm)

GPS

Number of satellites used
Positioning Performance

WRMS range per technique
(Internal Precision – Repeatability)

<table>
<thead>
<tr>
<th>Solution</th>
<th>2-D WRMS</th>
<th>Up WRMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>VLBI</td>
<td>2-3</td>
<td>5-7</td>
</tr>
<tr>
<td>SLR</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>GPS</td>
<td>2-3</td>
<td>5-6</td>
</tr>
<tr>
<td>DORIS</td>
<td>12-25</td>
<td>10-25</td>
</tr>
</tbody>
</table>

WARNING! These are indicative numbers and are station dependant
SLR station Performance!

Well performing Stations
Some Results from GRGS Experience: Combination at the observation level

- GINS/DYNAMO Software
- Use raw observations of 4 techniques
- Unique correction models
- Recent Experience: one year test (2001)
- Estimated parameters:
 - Polar Motion, UT1, LOD
 - Station positions at the weekly basis
Combination of raw measurements: TRFs

<table>
<thead>
<tr>
<th>Technique</th>
<th>T_X</th>
<th>T_Y</th>
<th>T_Z</th>
<th>D</th>
<th>R_X</th>
<th>R_Y</th>
<th>R_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIS</td>
<td>0.9</td>
<td>0.9</td>
<td>3.8</td>
<td>0.9</td>
<td>80.3</td>
<td>74.1</td>
<td>174.0</td>
</tr>
<tr>
<td>GPS</td>
<td>0.7</td>
<td>0.7</td>
<td>3.9</td>
<td>0.2</td>
<td>80.1</td>
<td>74.0</td>
<td>155.9</td>
</tr>
<tr>
<td>SLR</td>
<td>0.4</td>
<td>0.4</td>
<td>1.1</td>
<td>0.3</td>
<td>80.1</td>
<td>73.9</td>
<td>230.4</td>
</tr>
<tr>
<td>VLBI</td>
<td>413.1</td>
<td>412.9</td>
<td>409.8</td>
<td>1.9</td>
<td>77.2</td>
<td>82.1</td>
<td>154.1</td>
</tr>
</tbody>
</table>

Mean reference system effects for the individual techniques inside the combination in mm.

<table>
<thead>
<tr>
<th>Technique</th>
<th>T_X</th>
<th>T_Y</th>
<th>T_Z</th>
<th>D</th>
<th>R_X</th>
<th>R_Y</th>
<th>R_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIS</td>
<td>-6.9</td>
<td>-20.0</td>
<td>-2.6</td>
<td>36.9</td>
<td>-1.3</td>
<td>0.4</td>
<td>-1.5</td>
</tr>
<tr>
<td>GPS</td>
<td>-2.2</td>
<td>0.3</td>
<td>-1.6</td>
<td>11.7</td>
<td>0.1</td>
<td>0.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>SLR</td>
<td>-1.4</td>
<td>2.7</td>
<td>9.2</td>
<td>1.4</td>
<td>0.0</td>
<td>2.3</td>
<td>-1.4</td>
</tr>
<tr>
<td>VLBI</td>
<td>0.0</td>
<td>-1.0</td>
<td>1.3</td>
<td>-4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Mean values of the seven parameters of transformation estimated between the combined weekly TRF solutions computed with minimum constraints and the ITRF2000 (mm).
ITRF2005 – Frame Parameters
ITRF2005

Accuracy Assessment of the Frame Parameters?

- **Origin:** SLR Only
 - Accuracy assessment wrt ITRF2000

- **Scale:** scale bias btw VLBI and SLR
 - \(\sim 1 \text{ ppb} \) (formal error \(\pm 0.1 \))
SLR Origin and Scale Variations w.r.t. ITRF2000

1.8 mm/yr
ILRS Network

ILRS Weekly # of points

Number of stations

ILRS Week

VLBI vs SLR Scale wrt ITRF2005P
ITRF2005

Accuracy of the datum definition

<table>
<thead>
<tr>
<th></th>
<th>at epoch 2000.0 (mm)</th>
<th>Rate mm/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Scale</td>
<td>6.3</td>
<td>0.6</td>
</tr>
<tr>
<td>NNR</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TX (mm)</td>
<td>TY (mm)</td>
<td>TZ (mm)</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.9</td>
<td>-5.8</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>-1.8</td>
</tr>
</tbody>
</table>
Combination of raw measurements: results for EOPs

<table>
<thead>
<tr>
<th>Solution</th>
<th>Bias</th>
<th>WRMS</th>
<th>Solution</th>
<th>Bias</th>
<th>WRMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIS x_p</td>
<td>-416</td>
<td>939</td>
<td>SLR x_p</td>
<td>39</td>
<td>245</td>
</tr>
<tr>
<td>DORIS y_p</td>
<td>-229</td>
<td>837</td>
<td>SLR y_p</td>
<td>210</td>
<td>208</td>
</tr>
<tr>
<td>GPS x_p</td>
<td>-37</td>
<td>102</td>
<td>VLBI x_p</td>
<td>-135</td>
<td>225</td>
</tr>
<tr>
<td>GPS y_p</td>
<td>159</td>
<td>101</td>
<td>VLBI y_p</td>
<td>187</td>
<td>243</td>
</tr>
<tr>
<td>COMBI x_p 6 hours</td>
<td>-28</td>
<td>197</td>
<td>COMBI x_p 1 day</td>
<td>-31</td>
<td>90</td>
</tr>
<tr>
<td>COMBI y_p 6 hours</td>
<td>166</td>
<td>193</td>
<td>COMBI y_p 1 day</td>
<td>159</td>
<td>92</td>
</tr>
<tr>
<td>COMBI UT1 6 hours</td>
<td>-20</td>
<td>152</td>
<td>COMBI UT1 1 day</td>
<td>-11</td>
<td>121</td>
</tr>
</tbody>
</table>

Statistics between individual and combined solutions and EOPC04 time series

Values are given in μas for x_p and y_p, in 0.1μs for UT1-UTC.

GPS gives the reference for polar motion inside the combination

VLBI does it for Universal Time

Values show inconsistencies between techniques
Current Co Locations (1999 on)

- Missing Tie: (7)
- 2 Techniques: (59)
- 3 Techniques: (16)
- 4 Techniques: (2)
Current VLBI-SLR Co-locations (1999 on)

Inhomogeneous distribution of VLBI&SLR Networks and their Co-locations
ITRF Scale in danger !!!
Current VLBI-GPS Co-locations (1999 on)
Current VLBI-DORIS Co-locations (1999 on)

Poor number and distribution of VLBI and DORIS Co-locations
Current SLR-GPS Co-locations (1999 on)
Current SLR-DORIS Co-locations (1999 on)

Only 7 SLR-DORIS Co-locations
Current DORIS-GPS Co-locations (1999 on)
Limitations & Improvements (1/3)

- Poor SLR & VLBI networks and their co-location
- Improve analysis
 - Systematic errors
 - Include more satellites for SLR (see DORIS experience)
 - GM, Satellite CoMs
 - Correction models consistency
 - Troposphere
 - Relativity
 - Others
 - More TRF VLBI sessions
 - Process all SLR data
- Improve GPS equipments: discontinuity problem, antenna settings,…!
- Improve DORIS scale and Z-component (how?)
Limitations & Improvements (2/3)

• **Improve Co-locations:**
 – Re-Survey dubious Co-location sites (International effort needed)
 – More Co-locations with better distribution: SLR & VLBI !!!

• **Monitor the ITRF frame parameters (Scale & Origin):**
 – Regular time series analysis
 – Need IAG services commitment to continue providing weekly (daily) solutions

• **Monitor ITRF/EOPs consistency on a regular basis:**
 – Coordination between ITRF and EOP PCs
Limitations & Improvements (3/3)

- Improve modeling of the non-linear motion both for stations and frame parameters
- Combination at the observation level
 - Still very Short experience
 - Needs more groups
 - Should be adapted to the spirit of time series at weekly basis
 - Needs improvements to be full operational